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ABSTRACT 

The advent of immunotherapy using immune checkpoint inhibitors (ICI) and targeted 

therapy (TT) has dramatically improved the prognosis of various cancer types. 

Following ICI therapy or TT, either alone (especially ICI) or in combination with 

radiotherapy, however, imaging findings on anatomical contrast-enhanced MRI can be 

unpredictable, highly variable, and are often difficult to interpret regarding treatment 

response and outcome. This review aims at summarizing the imaging challenges 

related to TT and ICI monotherapy as well as combined with radiotherapy in patients 

with brain metastases, and to give an overview on advanced imaging techniques which 

potentially overcome some of these imaging challenges. Currently, major evidence 

suggests that imaging parameters especially derived from amino acid PET, perfusion-

/diffusion-weighted MRI, or MR spectroscopy may provide valuable additional 

information for the differentiation of treatment-induced changes from brain metastases 

recurrence and the evaluation of treatment response. 
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Immune checkpoint inhibitors; FET PET; brain metastasis; melanoma; lung cancer; 
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INTRODUCTION 

The advent of immunotherapy using immune checkpoint inhibitors (ICI) and targeted 

therapy (TT) has dramatically improved the prognosis of cancer, especially in patients 

with melanoma, lung cancer, or breast cancer. Although initially tested only in patients 

with extracranial cancer manifestations, recent trials have demonstrated that patients 

with brain metastases (BM) may also benefit from these agents alone or in combination 

with other treatment options such as radiotherapy.  

 

Immunotherapy rests on the premise that tumors can be recognized as foreign rather 

than self, and that they thereby can be targeted by the activated immune system. 

Antibodies that block regulatory checkpoints of the immune system can facilitate an 

immune response that leads to inhibition of tumor growth or regression. In particular, 

the blockade of immune checkpoints such as the cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) or programmed cell death receptor-1 (PD-1) axis, has resulted in a 

significant improvement of prognosis and overall survival 1,2. Furthermore, the 

combination of ICIs, i.e., nivolumab with ipilimumab, can generate complete or partial 

response of selected BM in an even greater percentage of patients, especially in 

melanoma 3,4. Studies on the combination of ICIs with radiotherapy in patients with BM 

suggest that this approach is a valuable option that may offer improved survival over 

ICI therapy alone 5. 

 

In addition to ICI, TT using small molecules has demonstrated activity against BM 6-8. 

The presence of predictive genetic alterations such as EGFR mutation, ALK or ROS1 

translocation, HER2 overexpression, or BRAF V600E mutation is considered as an 

essential prerequisite for a response to TT 9. Similar to ICI, the combination of TT with 

radiotherapy also appears to be effective in patients with BM 10,11, although substantial 
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side effects may occur following TT concurrent to radiotherapy, especially when BRAF 

inhibitors are used 12.  

 

Following TT or ICI therapy, either alone (especially ICI) or in combination with 

radiotherapy, imaging findings on anatomical contrast-enhanced MRI can be 

unpredictable, highly variable, and the interpretation concerning the differentiation of 

treatment response from tumor progression is often challenging. For example, 

pseudoprogression is one of the most important critical clinical and imaging 

challenges. It refers primarily to MRI findings that are mimicking progressive tumor, 

which, however, are actually due to other causes, particularly, inflammation related to 

(ICI) therapy. If pseudoprogression is not correctly identified, the consequences for 

patients and clinicians may be substantial, e.g., premature discontinuation of an 

effective treatment with a negative impact on patient outcome may ensue. Conversely, 

trial results for recurrent disease may be compromised if patients with 

pseudoprogression are entered because this will result in overestimating the activity of 

the experimental intervention explored. Although the immunotherapy Response 

Assessment in Neuro-Oncology (iRANO) Working Group recently recommended 

standard MRI and clinical criteria for addressing the clinical problem of 

pseudoprogression following immunotherapy 13, to date the need for the acquisition of 

additional diagnostic information to overcome the problem of differentiating 

pseudoprogression from tumor progression remains of foremost importance.  

Furthermore, other imaging challenges (e.g., the assessment of response to TT and 

ICI therapy) are not specifically incorporated into the iRANO criteria. 

 

We here aim at summarizing clinically relevant imaging challenges related to TT and 

ICI monotherapy as well as TT or ICI therapy plus radiotherapy in patients with BM, 
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and at providing an overview on advanced imaging techniques that may help to 

overcome these challenges. 

 

SEARCH STRATEGY, SELECTION CRITERIA AND LEVELS OF VALIDATION  

A PubMed search of the published literature with the combination of the search terms 

“brain metastasis / metastases”, “MRI”, “MR”, advanced MRI”, “perfusion MRI”, “PWI”, 

diffusion MRI”, “DWI”, “ADC”, “spectroscopy”, “MRS”, “PET”, “positron”, “FDG”, “amino 

acid”, “methionine”, “FET”, “FDOPA”, “FLT”, “radiotherapy”, “WBRT”, “radiosurgery”, 

“gamma knife”, “radiation-induced changes / radiation injury”, “radionecrosis”, 

“radiation necrosis”, “pseudoprogression”, “progression”, “delayed / mixed response”, 

“treatment monitoring”, “assessment of treatment response”, “hyperprogression”, 

“abscopal effect”, “immunotherapy”, “ipilimumab”, “nivolumab”, “pembrolizumab”, 

“targeted therapy”, “EGFR”, “BRAF”, “HER2”, and “ALK” before and inclusive of 

Februar 2019 was performed. Additionally, articles identified through searches of the 

authors’ own files were included in the search. Only papers constituting levels 1-3 

evidence according to the Oxford Centre for Evidence-based Medicine (The Oxford 

2011 Levels of Evidence) were considered. In brief, a randomized controlled trial fulfills 

the criteria for Oxford level 1, a prospective cohort study corresponds to level 2, and a 

retrospective study is consistent with Oxford level 3. 
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OVERVIEW ON IMAGING CHALLENGES FOLLOWING ICI AND TT IN PATIENTS 

WITH BM 

Pseudoprogression 

In patients undergoing immunotherapy using ICIs, intratumoral infiltrates including 

cytotoxic T cells (CD8+) may lead to pseudoprogressive MR imaging findings. 

Histopathology typically shows inflammatory cells 14, but not mitotically active tumor 

cells. Conversely, after ICI initiation progressive imaging changes might represent an 

initial true tumor progression that ultimately becomes controlled by a delayed immune 

response, subsequently leading to a decrease of tumor burden. Furthermore, a 

transient appearance of new contrast-enhancing lesions on MRI at either local or even 

distant sites might occur in patients with BM receiving ICIs. These findings suggest 

that new contrast-enhancing lesions might represent immune responses directed 

against infiltrative brain tumor cells. 

 

In extracranial solid tumors, the frequency of ICI-related pseudoprogression seems to 

be highest in melanoma treated with anti-CTLA-4 antibodies (range of 5-10% in the 

majority of studies) 15-17, but is lower in other solid tumors such as lung cancer treated 

with anti-PD-1/-PD-L1 antibodies (approximately 5%) 18,19. In contrast, data on the 

percentage of cases with pseudoprogression in patients with BM related to ICI 

monotherapy or ICI combination therapy are few 14,20-22. In a recent study in patients 

with BM from non-small cell lung cancer (NSCLC) treated with ICIs alone (n=1,025), 

the rate of pseudoprogression was only 0.8% 23, suggesting that this phenomenon is 

scarce in BM resulting from NSCLC or even misdiagnosed.  

 

The timing of pseudoprogressive changes in BM patients treated with ICIs has not 

been fully explored, but based on preliminary evidence this phenomenon may occur 
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early within the first weeks after initiation (range, 1.5 - 18 weeks) 14,20,21,24, but not later 

than 6 months. 

 

Regarding the occurrence of pseudoprogression in patients with BM related to TT 

monotherapy, data also remain scarce. In a NSCLC patient with ALK translocation, 

progressive MRI findings occurred after 12 months of alectinib treatment. Interestingly, 

histopathology was considered consistent with radiation necrosis although 

radiotherapy had been performed 7 years before the start of alectinib 25. 

 

Assessment of Treatment Response 

In patients with extracranial tumors treated with immunotherapy, Wolchok and 

colleagues described that basically four different patterns of response may occur: (i) 

rapid regression of baseline lesions without new lesions; (ii) durable stable disease (in 

some patients followed by a slow, steady decline in total tumor burden); (iii) an initial 

increase in tumor burden followed by (delayed) tumor regression; and (iv) the 

appearance of new lesions followed by a decrease in overall tumor burden 15. As stated 

above, the initial increase in tumor size or number of lesions in the latter two patterns 

does not always reflect actual disease progression, but may be related to 

pseudoprogression due to the influx of inflammatory cells. This important issue is also 

considered in frequently used immune-related response criteria, i.e., irRC 15, irRECIST 

26, and iRECIST 27. 

 

To rule out pseudoprogression following treatment for intracranial neoplasms, the 

iRANO criteria stipulate that within 6 months of initiating ICI therapy, early increases in 

lesion size and/or the development of new lesions do not define progressive disease 

unless further progressive changes are confirmed upon follow-up MR imaging, 
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provided that patients do not have clinical deterioration 13. After worsening of the first 

MR study after ICI therapy initiation, the iRANO criteria recommend a 3-months 

window for confirmation of progression 13. Besides, progressive imaging changes more 

than 6 months after immunotherapy initiation are more likely reflect an actual tumor 

progression 13,28,29. 

 

Thus, the early assessment of treatment response to ICI therapy may be thereby 

complicated by pseudoprogression. Furthermore, clinical evaluation of immunotherapy 

is also hampered by the absence of response criteria that can comprehensively 

describe all patterns of antitumor activity associated with such agents. In addition to 

the above stated four response patterns, lesions may also show “mixed” responses, 

consisting of regression in some lesions while others remained stable, progress, or 

appear simultaneously 15,30. This pattern of response has been termed dissociated 

response 31. 

 

Hyperprogression  

In extracranial tumors, it has been observed that a subset of patients might experience 

a paradoxical acceleration of tumor growth kinetics after initiation of ICI therapy using 

anti-PD-1/-PD-L1 antibodies, which may lead to a considerably reduced overall 

survival. This phenomenon has been termed hyperprogression or hyperprogressive 

disease 32-34. The reported frequency for hyperprogression is in the range of 6-29% 

and varied considerably across different solid tumor types 32. The highest rates of 

hyperprogression have been observed in patients with head and neck squamous cell 

carcinoma (29%) and NSCLC (14%) 35,36. 
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In clinical practice, the differentiation of hyperprogression from progressive tumors with 

a naturally aggressive phenotype remains a major challenge. To date, most of the 

current immune-related response criteria aim at identifying pseudoprogression but not 

hyperprogression. To recognize hyperprogression, it is important to integrate 

pretreatment tumor kinetics (tumor growth rate) by estimating the tumor size increase 

two- or three-dimensionally over time between two imaging studies. Subsequently, 

tumor growth rates can be used to compare the growth rate before and after initiating 

ICI. In several studies, at least a 2-fold increase of tumor growth on-treatment versus 

before ICI therapy has been considered as defining hyperprogressive disease 34,35. 

 

In patients with BM, reports on hyperprogression after initiation of ICI monotherapy 

remain scarce, and it is therefore still not yet clear whether hyperprogression may 

really occur in the CNS following ICI therapy. Kaito and co-workers reported a series 

of NSCLC patients (n=32) with a poor performance status or BM with severe 

exacerbations or manifestations of the primary disease related to nivolumab 37. The 

treatment was discontinued in 8 patients with BM due to severe exacerbation of 

neurologic symptoms (e.g., headache, gait disorder, disturbance of consciousness) 

indicating that hyperprogression may also occur in BM. However, BM growth rates 

before and after initiating ICI were not provided. 

 

Further Unsolved Imaging Challenges  

Several phase II and III trials in patients with BM have suggested that response to ICIs 

or TT on contrast-enhanced MRI based on frequently used response criteria 15,26,27,38,39 

is associated with considerably prolonged survival 3,4,40. However, there is an unmet 

need for the prediction of treatment response, e.g., by the evaluation of the tumor 

mutational burden 41 and molecular markers or non-invasively by using neuroimaging 
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biomarkers, ideally before the initiation of TT or ICI therapy. This is also of high clinical 

relevance, as these agents may cause severe side effects (i.e., CTCAE grade 3 and 

4) especially in patients with BM. 

 

ROLE OF RADIOTHERAPY IN COMBINATION WITH CI OR TT  

Synergistic effects of radiotherapy combined with ICI or TT 

Besides response, the therapeutic efficacy of any radiotherapy technique is usually 

determined in terms of the achieved local control rate of the irradiated lesion as well 

as the distant intracranial failure rate. Nowadays, radiosurgery is the dominant type of 

primary radiotherapy for patients with a limited number of small to middle-sized BM 42. 

Radiosurgery has high local efficacy, but does not target microscopic lesions distant 

to the lesions detected by brain imaging, and therefore the rate of distant BM in the 

further course of disease is usually high 43-46.  

 

The combination of radiosurgery with immunotherapy or TT may have synergistic 

effects on both irradiated and non-irradiated, distant regions. Within the target volume, 

the release of tumor cell antigens due to post-irradiation mitotic cell death may 

stimulate a cytotoxic immune response directed to the remaining tumor cells 47, leading 

to increased local response rates. Moreover, activated immune cells may also attack 

microscopic tumor cell clusters distant from the irradiated region, leading to a so-called 

abscopal effect 48 and a potential protection from the occurrence of distant BM. Figure 

1 shows neuropathological findings consistent with a distinct immune response most 

probably related to radiation therapy combined with targeted therapy. 

 

Several predominantly retrospective studies have addressed the effects combined 

therapy, i.e., radiosurgery and ICI or TT, compared to radiosurgery alone. Further 
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studies have focused on the optimal timing of systemic TT or ICI therapy relative to the 

time point of radiosurgery (Table 1). Studies of BM patients secondary to melanoma 

comparing radiosurgery and ICI or TT with radiosurgery alone suggest that combined 

therapies have the potential to increase response and local control rates compared to 

radiosurgery alone and can prevent distant BM at least to some extent 49-53. 

Additionally, the synergistic effects observed in patients with melanoma BM have also 

been observed in patients with BM from breast cancer 54-56. However, one study of 

patients with BM secondary to NSCLC did not find any synergistic effects of anti-PD1 

therapies in combination with radiosurgery 57.  

 

Regarding the optimal timing of systemic ICI therapy or TT and radiosurgery in 

melanoma patients with BM eligible for both approaches, the majority of these studies 

suggest that a faster and more pronounced or a more durable local response rate as 

well as a reduced distant intracranial failure rate were associated with a time interval 

of less than 4 weeks between initiation of systemic therapy and radiosurgery 58-65. 

However, randomized trials are needed to clarify whether radiosurgery should be 

applicated upfront or delayed at progression. 

 

Does ICI therapy or TT increase the rate of radiation necrosis after radiosurgery 

of brain metastases? 

After radiosurgery, approximately 30% of the lesions increase in size and change their 

pattern of contrast enhancement with a peak at 12-18 months after irradiation 66. Focal 

radiation necrosis is the most important type of late toxicity after radiosurgery. 

Histologically, radiation necrosis is characterized by a central area of necrosis 

surrounded by regions of vascular hyalinization, vasculitis, demyelination, macrophage 

and T-cell infiltration, and reactive astrocytosis 67,68. As these tissue changes are 
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clearly involve immunogenic reactions, an interference with immuno-modulatory 

therapy can be expected. In clinical routine, treatment-related changes on MRI are 

frequently used as surrogate marker for radiation necrosis. Usually, the diagnosis is 

based upon serial MR images, although the diagnostic criteria may differ between 

institutions.  

 

Table 1 shows the rate of radiation necrosis in BM patients treated with radiosurgery 

alone in comparison to BM patients treated with radiosurgery combined with TT or ICI 

therapy. These selected studies (2016-2019; Table 1) suggest that an increased risk 

for radiation necrosis cannot be excluded when radiosurgery is applied in combination 

with ICI therapy while the combination of radiosurgery with TT seems to be less prone 

to radiation necrosis. 

 

Pseudoprogression and Radiosurgery in Combination with ICI 

The occurrence of pseudoprogression after radiosurgery in combination with ICI 

therapy has so far not been well recognized. Compared to radiation necrosis, 

pseudoprogression may differ in terms of the time course of development (typically 

earlier) and the tissue reactions involved. A recent study observed that approximately 

20% of the treated BM showed a transient, reversible increase in size 3-6 months after 

combined treatment compared to 5% after radiosurgery alone 24. Rahman et al. 63 

reported that about 50% of melanoma patients concurrently treated with ipilimumab, 

pembrolizumab, or nivolumab and radiosurgery had an earlier tumor progression 

compared to those treated with ICI therapy with more time elapsed since radiosurgery. 

Despite these earlier tumor progressions, the concurrent patients had a better 

intracranial progression-free survival (30% vs. 12% at 12 months). The phenomenon 

of pseudoprogression has also been observed in melanoma BM patients treated with 
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PD-1 antagonists administered less than 6 weeks after radiosurgery 69. These findings 

warrant consideration during follow-up when interpreting conventional MRI.   

 

PET AND ADVANCED MRI AS NEUROIMAGING TOOLS TO OVERCOME 

CHALLENGES OF CONVENTIONAL MRI 

Currently, ICIs and TT are being investigated in clinical trials while already being used 

in clinical practice for patients with BM. While these therapies hold great promise, 

management of patients undergoing these treatments can be complicated due to brain 

imaging findings on standard MRI, e.g., immune-related pseudoprogression caused by 

ICI therapy or equivocal MRI findings related to radiation in combination with TT. Thus, 

ICIs and TT impose specific requirements on neuroimaging which are not met by 

anatomical MRI. Metabolic PET imaging and advanced MR techniques may provide 

helpful objective information to overcome these imaging challenges. An overview is 

presented in Table 2. 

 

PET 

Oncologic PET imaging using [18F]-2-fluoro-2-deoxy-D-glucose (FDG) has evolved 

over the last decades into the paramount clinical PET modality for cancer diagnostics 

70. Increased glucose metabolism as assessed by an increased FDG uptake is 

commonly seen in proliferating tumor cells due to an increased expression of glucose 

transporters and the enzyme hexokinase, which converts FDG to a phosphorylated 

product. However, the physiological high FDG uptake in the normal brain parenchyma 

hinders the delineation of brain tumors 71, and cerebral inflammatory processes may 

also exhibit high FDG uptake, thereby diminishing the diagnostic performance 72. 
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Radiolabeled amino acids are of particular interest for brain tumor imaging using PET 

because of their increased uptake in neoplastic tissue but low uptake in normal brain 

parenchyma, resulting in an improved tumor-to-brain contrast 72. A key feature of 

amino acid tracers is their ability to pass the intact blood-brain-barrier which allows the 

depiction of glioma tissue beyond contrast enhancement in MRI 72 and to differentiate 

tumor progression from non-specific, treatment-related changes, especially in patients 

with BM 73. Recently, the RANO group has analyzed the clinical value of amino acid 

PET in the diagnostic evaluation of brain tumors. It strongly recommended the use of 

this imaging technique in addition to conventional MRI especially for the delineation of 

brain tumor extent, treatment response assessment, evaluation of prognosis of newly 

diagnosed brain tumors, and the differentiation of treatment-related changes from 

tumor progression 71,73-76. Within the group of amino acid PET tracers, [11C]-methyl-L-

methionine (MET), 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA), and O-(2-

[18F]-fluoroethyl)-L-tyrosine (FET) are frequently used 72,77,78. In both gliomas and BM, 

increased uptake of MET, FET, and FDOPA is related to amino acid transporters of 

the L type (LAT; subtypes LAT1 and LAT2), which are overexpressed in tumor tissue 

79-82. Thus, the LAT transporter overexpression in BM makes intracranial metastases 

a compelling target for amino acid PET imaging 82. 

 

In patients with BM, a few PET imaging studies have used other tracers than FDG or 

radiolabeled amino acids. For example, the PET tracer 3´-deoxy-3´-[18F]-

fluorothymidine (FLT) is an analog to the nucleoside thymidine, and was developed to 

assess cellular proliferation by tracking the thymidine salvage pathway 83. The few data 

thus far available suggest that in patients with brain tumors including BM, this tracer 

may be of great value 84. 
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Importantly, in the USA, only FDG is FDA-approved and all other radiotracers are 

typically only available as part of a clinical trial. 

 

Differentiation of Radiation-induced Changes from Brain Metastasis Recurrence  

FDG PET has been studied to differentiate radiation-induced changes from BM 

relapse. Interestingly, the diagnostic performance of FDG PET varied considerably 

(range of sensitivity, 40-95%; range of specificity, 50-100%) 85-90. Most probably, these 

results might be related to a low number of patients and by variations in methodology. 

 

In contrast, FDOPA PET and MET PET have consistently demonstrated higher 

sensitivity and specificity of approximately 80% in differentiating treatment effect from 

BM recurrence 91-94. Another study has reported a high accuracy for differentiating 

radiation-induced changes from BM relapse after radiosurgery using FDOPA PET, out-

performing perfusion MRI parameters 91% to 76% 95.  Similarly, static and dynamic 

FET PET parameters showed a high diagnostic performance with a sensitivity and 

specificity of 80-90% for the differentiation of radiation-induced changes from locally 

recurrent BM 96-98. An illustrative case is presented in Figure 2. Furthermore, the 

diagnostic performance of amino acid PET seems to be superior to both glucose PET 

and perfusion- and diffusion-weighted MR imaging 90,95.  

 

Recent literature highlights the value of radiomics and artificial intelligence in the field 

of Neuro-Oncology 99-101. Radiomics enables the high-throughput extraction of 

quantitative imaging features from MRI as well as PET 102,103. Using FET PET, it has 

been demonstrated that radiomic textural feature analysis helps distinguishing 

treatment-related changes from BM recurrence 104. For this important clinical question, 
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radiomics analysis using the combination of textural features obtained from FET PET 

and contrast-enhanced MRI achieved a high diagnostic specificity (> 90%) 105. 

 

As stated above, pseudoprogression may occur in patients with BM treated with 

(mono-)immunotherapy using checkpoint inhibitors such as antibodies to CTLA-4 (e.g., 

ipilimumab), PD-1 (e.g., pembrolizumab or nivolumab), or PD-L1 (e.g., atezolizumab). 

A small pilot study (n=5 patients) highlighted the potential of FET PET to identify 

pseudoprogression in patients with BM secondary to melanoma treated with the ICI 

ipilimumab 20. In that study, FET PET imaging findings were correlated with the 

patients’ clinical course after ICI therapy initiation. In the case of pseudoprogression, 

FET PET showed in contrast to the progressive MRI only minimal or even no uptake 

and the outcome was favorable (> 6 months). 

 

Assessment of Treatment Response 

In patients (n=5) with melanoma BM (n=22) treated with TT or ICI therapy, a small 

prospective study found in a subset of patients that metabolic responders may show a 

proliferative reduction on FLT PET despite unchanged findings on standard MRI 106. 

Furthermore, FLT PET responders had a survival of more than 12 months after therapy 

initiation. The pilot data suggest that FLT PET also has the potential to detect a 

reduction of proliferative tumor activity despite apparent morphologic progression on 

conventional MRI (i.e., pseudoprogression). 

 

While the value of amino acid PET for the assessment of treatment response in 

gliomas is well established 107, studies on BM are still remain scarce. Single case 

reports suggest that amino acid PET has the potential to add valuable information to 

standard MRI for the assessment of treatment response. Similar to FLT PET, a 
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reduction of metabolic activity in BM patients secondary to melanoma or NSCLC 

treated with TT could be identified by FET PET, whereas findings on standard MRI 

remained unchanged 73,108. 

 

ADVANCED MRI 

While conventional MRI is exceptional in providing detailed anatomical information of 

both the central nervous system and brain tumors, advanced MRI methods offer the 

ability to yield valuable information concerning the tumor biology, especially at the 

functional, physiologic and molecular level. Commonly used advanced MR techniques 

include perfusion-weighted imaging (PWI), MR spectroscopy (MRS), and diffusion-

weighted imaging (DWI). Due to a better scanner resolution, smaller lesions 

(approximately 5 mm in diameter) can be better evaluated by MRI techniques than by 

PET (optimal lesion diameter, 10 mm or more). 

 

Differentiation of Radiation-induced Changes from Brain Metastasis Recurrence 
 
A recent meta-analysis by Chuang and colleagues 109 examined the value of various 

imaging parameters derived from PWI and MRS for the differentiation of recurrent 

tumor from radiation-induced necrosis in brain tumors patients. Of 397 brain tumor 

patients encompassed by 13 studies, 95 patients suffered from BM, and the remaining 

patiens had gliomas. The main finding of that meta-analysis was that MR spectroscopy 

and MR perfusion might increase the accuracy of differentiating recurrent tumor from 

radiation-induced necrosis in patients with gliomas or BM. In particular, the relative 

cerebral blood volume (rCBV) derived from PWI as well as various MRS metabolite 

ratios in contrast-enhancing lesions was significantly different in BM recurrence 

compared with radiation injury.  
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Regarding the diagnostic performance of PWI, the available studies revealed a 

considerable variability of sensitivity and specificity (range of sensitivity, 56-100%; 

range of specificity, 68-100%) and rCBV thresholds (range, 1.52 - 2.14) 89,95,110-113. 

Although PWI separates radiation-induced changes from BM recurrence with a 

relatively good accuracy in individual studies, there is a significant variability in optimal 

reported thresholds and methodology indicate that further studies and standardization 

are warranted. 

 

For MRS, the specificity for the detection of BM recurrence seems to be high (100% 

across all studies), whereas the sensitivity is relatively low (range, 33-50%) 112,114. Of 

note, MRS studies evaluating this clinical question remain comparatively rare and may 

be limited by a small lesion size (i.e., < 2 cm3). 

 

Apparent diffusion coefficients (ADC) obtained from DWI seem to be inferior to amino 

acid PET using MET for distinguishing radiation-induced injury from BM recurrence 

(area under the curve obtained from receiver operating characteristic curve analyses, 

0.60 vs. 0.81) 90. Furthermore, in contrast to the rCBV, ADC values seem not to be of 

value for the detection of treatment-related changes after stereotactic radiotherapy of 

BM 115. 

 

A radiomics-based prediction model based on contrast-enhanced T1 and FLAIR 

images has been used for distinguishing actual tumor progression from radionecrosis 

after stereotactic radiosurgery for BM patients 116. After cross-validation of the model, 

the radiomics analysis revealed a sensitivity and specificity of 65% and 87%, 

respectively (area under the curve, 0.81). 
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Evaluation of Response to Radiotherapy 

For the evaluation of treatment response in patients with BM, a variety of parameters 

obtained from dynamic susceptibility contrast (DSC), dynamic contrast-enhanced 

(DCE), or arterial spin labeling (ASL) perfusion MRI have been evaluated, including 

predominantly the rCBV, the relative cerebral blood flow (rCBF), and Ktrans (which 

reflects the efflux rate of gadolinium contrast from blood plasma into the tissue). 

 

Taunk and co-workers evaluated pre- and post-treatment stereotactic radiosurgery 

effects in 41 NSCLC patients with 53 BM using DCE PWI 117. Already within the first 

12 weeks after radiosurgery, the PWI parameter Ktrans could be used to predict long-

term response (median follow-up, 11 months) in this group of patients to stereotactic 

radiosurgery. Similar findings regarding the parameter Ktrans have been observed in 

previous PWI studies 118,119. 

 

In 25 patients with 28 BM treated with radiosurgery, rCBF alterations after 6 weeks as 

assessed using DSC or ASL allowed the prediction of the treatment effect (median 

follow-up, 6 months) 120. Similarly, Essig et al. found that a decrease of the rCBV at the 

6-week follow-up helped to predict the treatment outcome with a sensitivity of more 

than 90%. In contrast, the pre-therapeutic rCBV was unable to help predict treatment 

outcome 121. 

 

In patients with BM predominantly ADC values obtained from DWI have also been 

evaluated for the evaluation of treatment response, i.e., especially the response to 

radiosurgery. A few studies have suggested that patients with treatment-responsive 

BM the ADC values increased during follow-up after radiosurgery 122-124. Conversely, 

Jakubovic and colleagues evaluated 42 patients with 70 BM and observed - in contrast 
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to the aforementioned studies - that especially lower ADC values already at one week 

and one month identified responders to radiosurgery 125. Regarding the prediction of 

tumor response, Lee found that initial (pretreatment) ADC values of 107 patients with 

144 BM were able to predict response to radiosurgery with a sensitivity and specificity 

of 86% and 73%, respectively 126. 

  

Additionally, more sophisticated imaging postprocessing techniques of DWI such as 

the calculation of the diffusion abnormality probability function or functional diffusion 

maps seem to provide a reliable prediction of BM response to radiotherapy 127,128. 

 

SUMMARY AND OUTLOOK 

Advanced MRI and PET techniques have the great potential to noninvasively 

investigate the molecular, cellular, and structural components of the tumor and its 

microenvironment. In the light of recent treatment options for patients with BM such as 

ICI and TT and their potential side effects as well as ensuing imaging challenges, it is 

of paramount interest to both visualize and quantify metabolic and (patho)physiological 

changes, especially inflammation, before and during treatment.  

 

Currently, significant evidence suggests that imaging parameters especially derived 

from amino acid PET, PWI, DWI, or MRS may provide valuable additional information 

for the differentiation of treatment-induced changes from BM recurrence and the 

evaluation of treatment response. The PET/RANO group has recently published 

various recommendations which imaging modality should be preferred 73: Amino acid 

PET may be more useful than advanced MRI, whereas FDG PET appears to be 

inferior. However, at present direct comparisons of advanced MRI versus PET are 

limited. When using PET for this indication, amino acid tracers should be preferred 
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because present studies consistently show high diagnostic accuracy. Nevertheless, 

only little data is currently available for evaluation of ICI/TT-treated BM patients using 

these advanced imaging techniques. 

 

It is tempting to speculate that a multimodal approach combining parameters derived 

from each of these advanced imaging techniques may improve the diagnostic 

performance. To further improve the diagnostic accuracy and to assess the resulting 

clinical impact, multicenter studies are warranted that also standardize imaging 

protocols as well as post-processing procedures.
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FIGURE LEGENDS 
 
Figure 1: Radiation necrosis and chronic inflammation in a patient with brain 

metastases of a BRAF-mutated malignant melanoma who had been treated with 

whole-brain radiation therapy and concurrently with dabrafenib plus trametinib. 

Twenty-four months later, the contrast-enhanced MRI suggests brain metastasis 

recurrence (left panel), whereas the FET PET shows only an insignificant uptake, 

consistent with treatment-related effects. Neuropathological findings obtained 

following stereotactic biopsy revealed besides signs of radiation necrosis a 

considerable infiltration of intra- and perivascular T-cells (right panel):  

A: Hyaline, eosinophilic necrosis with only single leukocytes and cell detritus. A 

necrotic vessel wall is hyalinized and thickened (arrowhead). H&E staining; original 

magnification x 200. 

B: Adjacent to necrosis, small fragments of vital brain parenchyma harbor activated 

microglial cells (arrowhead) and reactive astrocytes (asterisk). Two blood vessels are 

heavily infiltrated by lymphocytes (arrows). Tumor cells are absent (insert). H&E 

staining; original magnification x 500; insert: immunohistochemistry with monoclonal 

mouse anti-HMB45 (DCS) and slight counterstaining with hemalum; original 

magnification, x200. 

C: Adjacent to the inflamed blood vessels (arrows), foamy CD68+ macrophages are 

in the process of resorption of necrosis (block arrows). In the brain parenchyma, 

microglial cells (arrowheads) and astrocytes (insert, asterisks) are activated. 

Immunohistochemistry with monoclonal mouse anti-CD68 (DCS) and slight 

counterstaining with hemalum; original magnification, x200; insert: 

immunohistochemistry with monoclonal mouse anti-GFAP (BioGenex) and slight 

counterstaining with hemalum; original magnification, x500. 
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D: CD3+ T cells are the major population of intra- and perivascular infiltrates (arrow). 

Both, CD4+ (left insert) and CD8+ (right insert) T cells contribute to the infiltrates. 

Immunohistochemistry with monoclonal rabbit anti-CD3 (DCS) and slight 

counterstaining with hemalum; original magnification, x200; inserts: 

immunohistochemistry with monoclonal mouse anti-CD4 (left, BioGenex) and with 

monoclonal rabbit anti-CD8 (right, DCS), slight counterstaining with hemalum; original 

magnification, x400.  

 

Figure 2: Radiation necrosis in a patient with brain metastases secondary to a breast 

cancer (ductal carcinoma, HER-2 negative, estrogen and progesterone receptor-

positive) (left panel). Five months after external fractionated radiation therapy, 

contrast-enhanced MRI suggests BM relapse (middle panel). In contrast, FET PET 

shows no increased metabolic activity, indicating treatment-related changes. 

Neuropathological findings obtained following stereotactic biopsy were consistent with 

radiation necrosis (right panel):  

A: Epithelial, pleomorphic tumor with increased mitotic activity (arrowheads) in the 

brain parenchyma expressing cytokeratin (CK) 8 (insert) at initial diagnosis. H&E 

staining; original magnification x 200. Insert: immunohistochemistry with monoclonal 

mouse anti-CK8 (BioGenex, Fremont, CA, USA) and slight counterstaining with 

hemalum; original magnification, x100. 

B: Hyaline, eosinophilic necrosis with only single leukocytes. A necrotic vessel wall is 

hyalinized and thickened (insert). Adjacent vital brain parenchyma shows reactive 

alterations with activated microglial cells and reactive astrocytes. H&E staining; original 

magnification x 200; insert: H&E staining; original magnification, x500. 

C: Necrosis is infiltrated by foamy macrophages (arrows). In the brain parenchyma, 

microglial cells (arrowheads) and astrocytes (insert, asterisks) are activated. 
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Immunohistochemistry with monoclonal mouse anti-MHC class I antigen (DCS, 

Hamburg, Germany) and slight counterstaining with hemalum; original magnification x 

200; insert: immunohistochemistry with monoclonal mouse anti-GFAP (BioGenex) and 

slight counterstaining with hemalum; original magnification, x500. 

D: Epithelial tumor cells were absent from necrosis and vital brain parenchyma. 

Immunohistochemistry with monoclonal mouse anti-CK8 (BioGenex) and slight 

counterstaining with hemalum; original magnification, x200. 

 

 


